Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
نویسندگان
چکیده
The intrinsic firing modes of adult CA1 pyramidal cells vary along a continuum of "burstiness" from regular firing to rhythmic bursting, depending on the ionic composition of the extracellular milieu. Burstiness is low in neurons exposed to a normal extracellular Ca(2+) concentration ([Ca(2+)](o)), but is markedly enhanced by lowering [Ca(2+)](o), although not by blocking Ca(2+) and Ca(2+)-activated K(+) currents. We show, using intracellular recordings, that burstiness in low [Ca(2+)](o) persists even after truncating the apical dendrites, suggesting that bursts are generated by an interplay of membrane currents at or near the soma. To study the mechanisms of bursting, we have constructed a conductance-based, one-compartment model of CA1 pyramidal neurons. In this neuron model, reduced [Ca(2+)](o) is simulated by negatively shifting the activation curve of the persistent Na(+) current (I(NaP)) as indicated by recent experimental results. The neuron model accounts, with different parameter sets, for the diversity of firing patterns observed experimentally in both zero and normal [Ca(2+)](o). Increasing I(NaP) in the neuron model induces bursting and increases the number of spikes within a burst but is neither necessary nor sufficient for bursting. We show, using fast-slow analysis and bifurcation theory, that the M-type K(+) current (I(M)) allows bursting by shifting neuronal behavior between a silent and a tonically active state provided the kinetics of the spike generating currents are sufficiently, although not extremely, fast. We suggest that bursting in CA1 pyramidal cells can be explained by a single compartment "square bursting" mechanism with one slow variable, the activation of I(M).
منابع مشابه
Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells.
In many principal brain neurons, the fast, all-or-none Na+ spike initiated at the proximal axon is followed by a slow, graded after depolarization (ADP). The spike ADP is critically important in determining the firing mode of many neurons; large ADPs cause neurons to fire bursts of spikes rather than solitary spikes. Nonetheless, not much is known about how and where spike ADPs are initiated. W...
متن کاملIonic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution.
Hippocampal CA1 neurons exposed to zero-[Ca(2+)] solutions can generate periodic spontaneous synchronized activity in the absence of synaptic function. Experiments using hippocampal slices showed that, after exposure to zero-[Ca(2+)](0) solution, CA1 pyramidal cells depolarized 5-10 mV and started firing spontaneous action potentials. Spontaneous single neuron activity appeared in singlets or w...
متن کاملIonic Mechanisms Underlying Spontaneous CA1 Neuronal Firing in Ca-Free Solution
Hippocampal CA1 neurons exposed to zero-[Ca] solutions can generate periodic spontaneous synchronized activity in the absence of synaptic function. Experiments using hippocampal slices showed that, after exposure to zero-[Ca]0 solution, CA1 pyramidal cells depolarized 5–10 mV and started firing spontaneous action potentials. Spontaneous single neuron activity appeared in singlets or was grouped...
متن کاملSK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
Calcium-activated K(+) channels of the K(Ca)2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding ...
متن کاملPotassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices.
Previous work suggested a role for the voltage-dependent persistent sodium current, I(Na,P), in the generation of seizures and spreading depression (SD). Ordinarily, I(Na,P) is small in hippocampal neurons. We investigated the effect of raising external K(+) concentration, [K(+)](o), on whole-cell persistent inward current in freshly isolated hippocampal CA1 pyramidal neurons. I(Na,P) was ident...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 4 شماره
صفحات -
تاریخ انتشار 2006